Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.818
1.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730334

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Actins , Meiosis , Oocytes , cdc42 GTP-Binding Protein , Animals , Oocytes/metabolism , Mice , Female , Actins/metabolism , Actins/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Phosphorylation , Spindle Apparatus/metabolism
2.
Sci Signal ; 17(835): eadj0032, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713765

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.


Actins , Carrier Proteins , Cerebral Cortex , Mice, Knockout , Serum Response Factor , Trans-Activators , Animals , Cerebral Cortex/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Mice , Actins/metabolism , Actins/genetics , Neurons/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Gene Expression Regulation , Signal Transduction
3.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722279

In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.


Actins , Microtubules , Profilins , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/genetics , Actomyosin/metabolism , Microtubules/metabolism , Neurons/metabolism , Profilins/metabolism , Profilins/genetics , Tubulin/metabolism , Tubulin/genetics
4.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709176

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Cardiomyopathy, Dilated , Ventricular Myosins , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism , Mutation , Actins/metabolism , Actins/genetics , Myocardial Contraction/physiology , Animals
5.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731597

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Artemisia , Artemisinins , Fibroblasts , Fibrosis , Humans , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Actins/metabolism , Actins/genetics , Artesunate/pharmacology , Gene Expression Regulation/drug effects , Artemether/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology
6.
Sci Rep ; 14(1): 9186, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649690

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.


Bone Neoplasms , Gene Expression Regulation, Neoplastic , Osteosarcoma , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/mortality , Osteosarcoma/metabolism , Tumor Microenvironment/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Profiling , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Actins/metabolism , Actins/genetics
7.
Nat Commun ; 15(1): 3216, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622120

Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that ß-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.


Actins , Optogenetics , Humans , Actins/genetics , Biomolecular Condensates , Hypertrophy , Long-Term Potentiation
8.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662776

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Actins , Cell Adhesion , Drosophila Proteins , Drosophila melanogaster , Extracellular Matrix , Integrins , Talin , Talin/metabolism , Talin/genetics , Animals , Cell Adhesion/genetics , Binding Sites , Extracellular Matrix/metabolism , Actins/metabolism , Actins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Integrins/metabolism , Integrins/genetics , Mutation , Protein Binding , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Cytoskeleton/metabolism , Cytoskeleton/genetics
9.
Biochem Pharmacol ; 223: 116199, 2024 May.
Article En | MEDLINE | ID: mdl-38604256

GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of ß1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM­GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM­GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM­GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM­GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM­GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.


Distal Myopathies , N-Acetylneuraminic Acid , Oximes , Piperidines , Animals , Rats , Actins/genetics , Distal Myopathies/drug therapy , Distal Myopathies/genetics , Insulin-Like Growth Factor I , Mutation , N-Acetylneuraminic Acid/genetics , N-Acetylneuraminic Acid/metabolism , Oximes/pharmacology , Piperidines/pharmacology , Racemases and Epimerases/genetics
10.
PLoS Biol ; 22(3): e3002551, 2024 Mar.
Article En | MEDLINE | ID: mdl-38466773

Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in ß-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct ß-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct ß-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.


Actins , Microfilament Proteins , Animals , Humans , Actins/genetics , Actins/metabolism , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cytoskeleton/metabolism , Saccharomyces cerevisiae/metabolism , Mammals/metabolism
11.
J Cell Biol ; 223(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38517380

Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.


Tight Junction Proteins , Tight Junctions , Actins/genetics , Actins/metabolism , Claudins/metabolism , Epithelial Cells/metabolism , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Madin Darby Canine Kidney Cells , Animals , Dogs
12.
Sci Rep ; 14(1): 6143, 2024 03 13.
Article En | MEDLINE | ID: mdl-38480844

Quantitative real-time polymerase chain reaction (qRT-PCR) has become a commonly used method for the quantification of gene expression. However, accurate qRT-PCR analysis requires a valid internal reference for data normalization. To determine the valid reference characterized with low expression variability among Spodoptera litura samples after microbial pesticide treatments, nine housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), arginine kinase, ubiquitin C, actin-5C (ACT5C), actin, ribosomal protein S13 (RPS13), tubulin, acidic ribosomal protein P0 (RPLP0) and ubiquinol-cytochrome c reductase, were evaluated for their suitability using geNorm, Normfinder, BestKeeper, RefFinder and the comparative delta CT methods in this study. S. litura larvae after direct treatment (larvae were immersed in biopesticides), indirect treatment (larvae were fed with biopesticide immersed artificial diets) and comprehensive treatment (larvae were treated with the first two treatments in sequence), respectively with Metarhizium anisopliae, Empedobacter brevis and Bacillus thuringiensis, were investigated. The results indicated that the best sets of internal references were as follows: RPLP0 and ACT5C for direct treatment conditions; RPLP0 and RPS13 for indirect treatment conditions; RPS13 and GAPDH for comprehensive treatment conditions; RPS13 and RPLP0 for all the samples. These results provide valuable bases for further genetic researches in S. litura.


Actins , Gene Expression Profiling , Animals , Spodoptera/genetics , Actins/genetics , Real-Time Polymerase Chain Reaction/methods , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Gene Expression
13.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Article En | MEDLINE | ID: mdl-38498576

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Actins , Hearing Loss, High-Frequency , Animals , Mice , Actins/genetics , Actins/metabolism , Cochlea/metabolism , Formins/genetics , Genome-Wide Association Study , Hearing , Mice, Knockout , Polymerization
14.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38483990

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Actins , Serum Response Factor , Actins/genetics , Actins/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Oligodendroglia/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Cytoskeleton/genetics , Cell Differentiation/genetics
15.
J Autoimmun ; 145: 103204, 2024 May.
Article En | MEDLINE | ID: mdl-38520895

Epidemiological studies show that cardiovascular events related to platelet hyperactivity remain the leading causes of death among multiple sclerosis (MS) patients. Quantitative or structural changes of platelet cytoskeleton alter their morphology and function. Here, we demonstrated, for the first time, the structural changes in MS platelets that may be related to their hyperactivity. MS platelets were found to form large aggregates compared to control platelets. In contrast to the control, the images of overactivated, irregularly shaped MS platelets show changes in the cytoskeleton architecture, fragmented microtubule rings. Furthermore, MS platelets have long and numerous pseudopodia rich in actin filaments. We showed that MS platelets and megakaryocytes, overexpress ß1-tubulin and ß-actin mRNAs and proteins and have altered post-translational modification patterns. Moreover, we identified two previously undisclosed mutations in the gene encoding ß1-tubulin in MS. We propose that the demonstrated structural changes of platelet cytoskeleton enhance their ability to adhere, aggregate, and degranulate fueling the risk of adverse cardiovascular events in MS.


Blood Platelets , Cytoskeletal Proteins , Cytoskeleton , Multiple Sclerosis , Tubulin , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/blood , Blood Platelets/metabolism , Tubulin/metabolism , Tubulin/genetics , Female , Cytoskeleton/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adult , Male , Middle Aged , Actins/metabolism , Actins/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Protein Processing, Post-Translational , Mutation
16.
Biosci Biotechnol Biochem ; 88(5): 522-528, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38341279

Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.


Actins , Collagen Type I , Electric Stimulation , Fibroblasts , Platelet-Derived Growth Factor , Humans , Collagen Type I/metabolism , Collagen Type I/genetics , Actins/metabolism , Actins/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Platelet-Derived Growth Factor/metabolism , Imatinib Mesylate/pharmacology , Cell Differentiation/drug effects , Skin/metabolism , Skin/cytology , Cells, Cultured , Gene Expression Regulation/drug effects , Dermis/cytology , Dermis/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Up-Regulation
17.
J Hum Genet ; 69(3-4): 133-138, 2024 Apr.
Article En | MEDLINE | ID: mdl-38316882

The ACTA2 gene encodes actin α2, a major smooth muscle protein in vascular smooth muscle cells. Missense variants in the ACTA2 gene can cause inherited thoracic aortic diseases with characteristic symptoms, such as dysfunction of smooth muscle cells in the lungs, brain vessels, intestines, pupils, bladder, or heart. We identified a heterozygous missense variant of Gly148Arg (G148R) in a patient with a thoracic aortic aneurysm, dissection, and left ventricular non-compaction. We used zebrafish as an in vivo model to investigate whether or not the variants might cause functional or histopathological abnormalities in the heart. Following the fertilization of one-cell stage embryos, we injected in vitro synthesized ACTA2 mRNA of wild-type, novel variant G148R, or the previously known pathogenic variant Arg179His (R179H). The embryos were maintained and raised for 72 h post-fertilization for a heart analysis. Shortening fractions of heart were significantly reduced in both pathogenic variants. A histopathological evaluation showed that the myocardial wall of ACTA2 pathogenic variants was thinner than that of the wild type, and the total cell number within the myocardium was markedly decreased in all zebrafish with pathogenic variants mRNAs. Proliferating cell numbers were also significantly decreased in the endothelial and myocardial regions of zebrafish with ACTA2 variants compared to the wild type. These results demonstrate the effects of ACTA2 G148R and R179H on the development of left ventricle non-compaction and cardiac morphological abnormalities. Our study highlights the previously unknown significance of the ACTA2 gene in several aspects of cardiovascular development.


Aortic Aneurysm, Thoracic , Heart Defects, Congenital , Animals , Humans , Actins/genetics , Actins/metabolism , Zebrafish/metabolism , Mutation, Missense , Aortic Aneurysm, Thoracic/genetics
18.
Food Chem Toxicol ; 186: 114545, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403181

Deoxynivalenol (DON) is one of the frequent Fusarium mycotoxins and poses a serious threat to public health worldwide. DON-induced weight loss is tightly connected with its ability to decrease feed intake by influencing gastrointestinal tract (GIT) motility. Our previous reports indicated that DON interfered with intestinal motility by injuring the contractility of enteric smooth muscle cells (SMC). Here, we further explored the potential mechanisms by employing a complementary method of transcriptomics and proteomics using the porcine enteric smooth muscle cell line (PISMC) as an experimental model. The transcriptomic and proteomic data uncover that the expression of numerous extracellular matrix (ECM) proteins and multiple integrin subunits were downregulated in PISMC under DON exposure, suppressing the ECM-integrin receptor interaction and its mediated signaling. Furthermore, DON treatment could depress actin polymerization, as reflected by the upregulated expression of Rho GTPase-activating proteins and cofilin in PISMC. Meanwhile, the expression levels of downstream contractile apparatus genes were significantly inhibited after challenge with DON. Taken together, the current results suggest that DON inhibits enteric SMC contractility by regulating the ECM-integrin-actin polymerization signaling pathway. Our findings provide novel insights into the potential mechanisms behind the DON toxicological effects in the GIT of humans and animals.


Mycotoxins , Transcriptome , Trichothecenes , Swine , Humans , Animals , Actins/genetics , Proteomics , Mycotoxins/pharmacology , Gene Expression Profiling , Myocytes, Smooth Muscle , Integrins
19.
Cancer ; 130(S8): 1435-1448, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38358781

BACKGROUND: Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC. METHODS: Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort. To develop a TPBC-PEG signature, Cox regression and least absolute shrinkage and selection operator regression analyses were applied. Functional analyses were performed with gene set enrichment analysis. The relationship between candidate genes and neoadjuvant chemotherapy (NACT) sensitivity was explored via real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on the basis of clinical samples. RESULTS: Among 900 TPBC-PEGs, 437 showed significant differential expression between TPBC and normal tissues. Three prognostic PEGs (actin-like 6A [ACTL6A], chaperonin containing TCP1 subunit 2 [CCT2], and threonyl-TRNA synthetase [TARS]) were identified and used to construct the PEG signature. Patients with high PEG signature scores exhibited a worse overall survival and lower sensitivity to NACT than patients with low PEG signature scores. RT-qPCR results indicated that ACTL6A and CCT2 expression were significantly upregulated in patients who lacked sensitivity to NACT. IHC results showed that the ACTL6A protein was highly expressed in patients with NACT resistance and nonpathological complete responses. CONCLUSIONS: This efficient PEG signature prognostic model can predict the outcomes of TPBC. Furthermore, ACTL6A expression level was associated with the response to NACT, and could serve as an important factor in predicting prognosis and drug sensitivity of patients with TPBC.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Actins/genetics , Genes, Essential , Neoadjuvant Therapy/methods , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/therapeutic use , DNA-Binding Proteins/genetics
20.
Chin Med Sci J ; 39(1): 1-8, 2024 Mar.
Article En | MEDLINE | ID: mdl-38384000

Objective To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.Methods The small interfering RNA (siRNA) was transfected to knock down ABI3BP gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on ABI3BP knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.Results The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of ABI3BP in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after ABI3BP gene knockdown. Compared with the control group, the gene copy number of VSV-GFP in ABI3BP knockdown cells increased by 2.2 - 3.5 times (P<0.01) and 2.2 - 4.0 times (P<0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in ABI3BP knockdown cells after virus infection. The activation of type-I interferon pathway, as determined by phosphorylated IRF3 and phosphorylated TBK1, was significantly decreased in ABI3BP knockdown cells after VSV-GFP infection.Conclusions Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure. ABI3BP gene deletion promotes RNA virus replication, and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.


Vesicular Stomatitis , Animals , Humans , Vesicular Stomatitis/metabolism , Actins/genetics , Actins/metabolism , Phalloidine/metabolism , Vesicular stomatitis Indiana virus/genetics , Antiviral Agents , Extracellular Matrix Proteins/metabolism , Carrier Proteins
...